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Exact tagged particle correlations in the random average process
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We study analytically the correlations between the positions of tagged particles in the random average
process, an interacting particle system in one dimension. We show that in the steady state, the mean-squared
autofluctuation of a tracer particle grows subdiffusivel%(t)~tl’2 for large timet in the absence of external
bias but grows diffusivelyré(t)~t in the presence of a nonzero bias. The prefactors of the subdiffusive and
diffusive growths, as well as the universal scaling function describing the crossover between them, are com-
puted exactly. We also computx%(t), the mean-squared fluctuation in the position difference of two tagged
particles separated by a fixed tag shift the steady state and show that the external bias has a dramatic effect
on the time dependence of(t). For fixedr,af(t) increases monotonically within the absence of bias, but
has a nonmonotonic dependence toim the presence of bias. Similarities and differences with the simple
exclusion process are also discussed.
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I. INTRODUCTION derive some exact results on the tracer fluctuations in the
RAP where the dynamics of tagged particles are followed.

Int " ficl . . di . The tracer diffusion has been studied in detail for the
nteracling particie Systems in one dimension aré among; 51 exclusion process and many interesting results are

the simplest examples of many-body systems that are fag,q\yn[1]. In the exclusion process, the combined effect of
from equilibrium [1]. One of the most studied examples is pargcore interaction and the external bigs-(@) shows up
the simple exclusion process in one dimension. In this SySrather dramatically in the asymptotic long-time behavior of
tem, each site of a one-dimensional lattice is either occupiethe mean squared autofluctuation in the position of a tracer
by a hardcore particle or is empty. In a small-time intervalpartide in the steady state. & (t)=x;(t)—(x(t)) denotes
dt, each particle attempts to hop to the neighboring latticehe deviation in the positior;(t) of theith particle from its
site on the right with probabilitpdt, to the left neighboring  average value, then the mean squared autofluctuation is de-
site with probabilityqdt, and stays at the original site with fined as,o3(t,to+1t)=([(to+1) — £i(to)]%), wheret, is
probability 1—(p-+q)dt. An attempted hop is completed the waiting time after which one starts measuring the fluc-
provided the target site is empty. A wealth of results aretuations. In the steady statg— o, the asymptotic behavior
known for this systeni1-3]. of cré(t)zlithDc o5(to,to+t) for larget is known[1]. In
Another interacting particle system in one dimension thathe apsence of external biap%q=1/2), i.e., for the sym-
has attracted recent interest is the random average procesgtric exclusion proces¢SEP, o3(t)~AtY2 for large t
(RAP) [4,5]. In the RAP, particles are located on a real lineyhere the constart= (2/7)¥2(1— p)/p is known exactly in
as opposed to a lattice in the simple exclusion process. Lekrms of the density of the particles[12—14. This slow
Xi(t) be the position of théth particle at timet (see Fig. L subdiffusive growth is due to the caging effect arising from
In a small-time intervatlt, each particle jumps to the right hard-core exclusion in one dimension where a particle is al-
with probability pdt by an amount ;" (x;,;—X;), to the left ~ ways hemmed in by its neighbors. However, in the asymmet-
with probability gdt by an amount; (x;—x;_;), and stays ~ric case(ASEP) when a nonzero biap—q>0 is switched
at its original location with probability * (p+q)dt. Here, on, one finds, somewhat unexpectedg(t) ~ Dt for larget
r,;” andr; are independent random variables drawn from thevhere the tracer diffusion coefficiend=(p—q)(1—p)
interval [0,1] with identical probability density function [15.18. Th‘; crossover from the subdiffusive to diffusive be-
(pdf) f(r). Thus, the jumps in either direction is a random havior Ofa'o(.t), as an _|nf|n|te5|mal bias is swﬂphed on, was
fraction of the gap to the nearest particle in that directionnderstood in a physically transparent way via a rather un-
For convenience, we have defined the RAP with random sedSual  mapping ~ of ~the exclusion process to a
guential dynamics, though it has been studied with paralle(lJr1)'d'm_enSIonaI interface qu@17,18:|._ This mapping
dynamics as wel[4,5]. The detailed study of the RAP is also established that an appropriately defined sliding tagged-

important since it has shown up either directly or in disguisepartICIe correlation function varies anomalouslyt&s [17].
in a variety of problems including traffic moddlé], models

of mass transporf5], models of force fluctuation in bead qdt pdt

packs[6], models of voting system,8], models of wealth A~

distribution [9], and the generalized Hammersley process X;_| X; X,

[10]. Like the simple exclusion process, some aspects of the

RAP are analytically tractablg4,5,11. In this paper, we FIG. 1. The stochastic moves in the RAP.
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This anomaloust?® growth also shows up in the mean- mean-squared fluctuation in the displacement of a single

square fluctuation of the center of mass of the particles whetracer particle. Sections VA and VB contain, respectively,

viewed from a special moving franj&9]. the discussions on the SRAP and the ARAP, while the cross-
A question then arises naturally is what are the correover between them is discussed in Sec. VC. Section VI con-

sponding results on the tracer diffusion for the RAP? Thetains the generalization to the two-tag correlation functions.

only known result is for the fully asymmetric RAP with Finally, we conclude with a summary and discussion in Sec.

=0 (and time rescaled by) where the particles move only VL.

to the right. In this Iimit,ag(t) was computed by Krug and

Garcia using a phenomenological hydrodynamic Langevin Il. THE MODEL AND PRELIMINARIES

_equation bas_ed on heuris_tic qrgument_s, as well as using an \y,e consider a system of particles of average density
independent jump approximati¢d]. Their result shows that |gcated on a real line. Le¢ (t) denote the position of thigh
o§(t)~D;t for larget with D1 =p~ 2 u /(11— p2) Where  particle at timet (see Fig. 1 In an infinitesimal time interval

p is the density of the particles ang,=[3drr*f(r) is the  dt, each particle jumps with probabilitydt to the right, with
kth moment of the pdf(r). Later, Schtz attempted to de- probability qdt to the left, and with probability % (p
rive this result rigoroush{20] by writing down the exact +q)dt, it rests at its original location. The actual amount by
equation of evolution of the equal time-correlation functionwhich a particle jumpseither to the right or to the lefis a

G, (t)={(Zo(t) (1)) and then using a chain of arguments. random fraction of the gap between the particle and its
Note that the definition gg(to,toﬂ):([gi(toﬂ) neighboring particlé€to the right or to the lejt For example,

— 4i(to)1?) involves both the variancéZ?(t)), which is an  the jump to the right is by an amounf (x;,1—x;) and to
equal time observable, as well as the unequal time correlghe left byr;” (x;—X;_;). The random variables™ are inde-
tion (Zi(to) Li(to+1)). Thus, a proper approach, as followed pendently drawn from the interv@D,1] and each is distrib-
in this paper, would be to compute these correlation funcuted according to the same pfffr), which is arbitrary. We

tions exactly and then take the steady-stgte « limit. start from an arbitrary but fixed initial condition &0 and
The main results of this paper can be summarized as folaveraging of physical quantities is done over all histories of
lows. evolution keeping the initial condition fixed. The time evo-

(1) We compute exactly the mean-squared autofluctuatiotution of the position;(t)’s can be represented by the exact
in the displacement of a single tracer partiah§(ty,to+t)  Langevin equation
=([&i(to+1)— i(to)1%) for larget, andt for all values ofp
andq in the RAP. In the steady-statg— o, we show that Xi(t+dt)=x(t) + ¥(1), @)
oo(t)=limy .. o5(to,to+t) ~Asrad™ for larget for the

) ) i where y;(t) are random variables given by
symmetric RARSRAP with p=q. For the asymmetric RAP

(ARAP) where p>q, we fiznd ag(t)]?ARApt for large t. r x4 1(t)—xi(t)] with prob pdt,
The constantsAggag=2p (P /7) " “pol(pu1— p,) and ) - _ .
Darap=p 2(P— Q) mipma /(11— ) are computed exactly. %O=1 1 Xi-aO=x(0] withprob gdt, ()

For the special casg=0 andp=1, Dpgapreduces td; 0 withprob 1—(p+q)dt.
computed earlier in Ref$4,20].

(2) We compute exactly the universal scaling function thatThe random variables™ are independent and each is distrib-
describes the crossover behaviorog{t) from the subdiffu-  uted over the intervdl0,1] with the same pdf(r). Thekth
sive t¥2 growth to the diffusivet growth as one switches on moment of the pdf is denoted by, = [5drr*f(r). Note that
an infinitesimal bias§—q). since Osr=<1 andf(r)=0, u1=pu,.

(3) We generalize the single tracer particle fluctuation We define a new random variabig(t) that measures the
oj(to,to+1) to the fluctuation in the position difference of deviation ofx;(t) from its mean value
two tagged particles defined a:?(to,t0+t):<[§i+,(t0+t)

—i(t)]1?). We show that in the steady state;(t) GH=x (0= {x(V). &)

=limg .. f(to,to+t) grows monotonically witht for a o Egs.(1) and (2), one can easily derive the evolution
fixed tag shiftr for the SRAP. For the ARAP on the other rules for the/; variables. We find
hand, it grows witht in a nonmonotonic fashion with a single
minimum at a characteristic timé& =r/u,;(p—q). M

(4) We also compute various scaling functions that de- Zi(t+dt)=§i(t)—(p—q)7dt+ 7i(t), (4)
scribe the crossover of the tracer fluctuations from their
nonsteady-state behavior to the steady-state behavior as tigere 7,(t) is given by
waiting timety— .

The paper is organized as follows. In Sec. I, we define rH (i ()=t +p~ 1) with prob  pdt,
the model precisely and set up our notations. In Sec. Ill, we _ 1 .
calculate the equal-time correlation function for the RAP for  7i(D) =1 Ti ({i-aW=&(—p ") withprob qdt,
all p andg. Section IV contains the exact calculation of the 0 withprob 1-(p+q)dt.
unequal-time correlation function. In Sec. V, we compute the (5)
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By definition, (£;(t))=0. Also from Eq.(5), it follows that We note that this equation was also derived in R2@]
(mi(1))=(p—a)[(x1)/(p)]dt. by a rather lengthy method, but was left unsolved. In this
In this paper, we will focus on the mean-squared displacesection, we derive an exact solution of E&). Note that

ment of a tagged particle. It turns out that the asymptoticeven though Eq(8) represents the diffusion equatidin
behavior of the mean-squared displacement depends crdiscrete spagewith a source term at the origin=0, its
cially on whether one starts measuring these fluctuations afolution is nontrivial due to the fact that the source term
ter some finite waiting time, or if one first waits for an depends orGy(t) and G4(t), which need to be determined
infinite time and then starts measuring the statistics. The latself consistently. Similar diffusion equations with source
ter corresponds to measuring the fluctuations in the steadgrm for the correlation functions have also appeared recently
state. This is similar to the “approach to stationary” versusin the context of aggregation models with injecti@2]. Be-
“stationary” regimes found in various interface modg&l].  fore proceeding to solve E(B), we first set up our notations.
This can be quantified precisely in terms of the following We define the standard Fourier transform

correlation function:

o3(to,to+ 1) =([&i(t+10) — &i(t0)1?), (6) G(kt)= > G (t)eX, (9)

r=—cw

= Golt+1o) +Golto) =2Co(to, to 1), D the Laplace transform

where G, (t)=(¢;(t)¢& . (t)) is the equal-time correlation .

function andC, (to,to+t) = (£i(to) i+ (to+t) With t>0 de- (;r(s):f G, (H)e S, (10
notes the unequal-time correlation function. RerO, the 0

unequal-time correlation function reduces to the equal-time

correlation function,C,(ty,to) =G, (to). Note that we have and the joint Fourier-Laplace transform,

assumed an infinite system so that the translational invari-

ance holds. In the next two sections, we calculate analyti- (= Cstas oo r
cally the correlation function§,(t) and C,(tq,to+t), re- F(k,s)= o G(k,ve dt_r;x Gi(s)e™. (11
spectively.
Taking the joint Fourier-Laplace transform of E), we
IIl. EQUAL-TIME CORRELATION FUNCTION obtain
In this section, we calculate the equal-time correlation _2 ~ ~
function G, (t)=(Z;(t) i+, (t)) exactly for the RAP for alp F(k.s)= pa(P+a)lp "+25(Go(s) ~Ga(s))] (12)

andg. Our starting point is Eq(4) in conjunction with Eq. s[s+2u1(p+q)(1—cosk)] '

(5) describing the evolution of thg variables with time. We

consider the evolution equatiorf€q. (4)] for both {;(t  where we have assumed that initialy,(0)=0, which is
+dt) and ¢, (t+dt), multiply them, and then take the av- true for any fixed initial condition. For random initial condi-
erage() over all histories, keeping terms only up@(dt).  tion, F(k,s) will contain additional terms arising from the
This yields, in the limitdt— 0, the exact evolution equation initial condition, but one can show that they do not contrib-
of the correlation functiorG,(t) and we obtain, ute to the asymptotic large-time properties@f(t) as long

as the initial condition has only short-ranged correlations. We
therefore usés,(0)=0 without any loss of generality.

Equation(12) contains two unknown&,(s) and G,(s).
One of them, saf;l(s), can however be expressed in terms

of Go(s) by taking directly the Laplace transform of E@)
(8 for r=0 and usingG,(t)=G_,(t). This gives the relation

d
i Cr(O=pa (PTG +1(D+ G- (1) —2G (V)]

+ 6 opa(P+ A p 2+ 2{Go(t) — G1(t)}].

Equation(8) is valid for all positive and negative integers B pop 2
includingr=0 and clearlyG,(t)=G_(t). Thus, the equa-  sGy(s)=(p+q) S
tion of evolution for the two-point correlations involve only

two-point correlations and not higher-order correlations. This

closure property is crucial for obtaining an exact solution for N . .
the correlation functions. The key reason behind this closuréc’UbStItUtIng Eq(13) into Eq.(12) we obtain

lies in the fact that the random fractions’s at timet are o o=

independent of the;(t). One noteworthy fact about E¢g) Flks)= —2 [pa(Pt+a)p "~ S"Go(5)]

is that the ratepp and q make their appearance only as an (M2 o) S[st2u4(pF+g)(1—cosk)]
overall multiplicative factor p+q). We could absorb this (14)
factor into the time by doing a suitable rescaling, and hence, 5

the equal-time correlation functio®,(t) is same for both We now have to determin®y(s) self consistently. This can
the ARAP and the SRAP. be done by using the inverse Fourier transform

_Z(Ml_/iz)(éo(s)_él(s))}
(13)
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e (s)=ifw F(k.s)e *rdk (15)
' 27 )y '

Substituting the expression &f(k,s) from Eq. (14) in Eq.
(15) atr =0, we obtain the exadby(s)

~ paa(p+0) p?1(0s)

Gols)="0,— M . (16)
v S| 1+—Zsl(0,s)

(p1—p2)
wherel(r,s) is given by the integral

. efikrdk

I(r’s):Zf_w[sﬂtz,ui(l—cosk)]
1 2u)+s— P +aus) " a

- JS+aus 2u1 ’

where u;=u1(p+q). Knowing Go(s) determinesF(k,s)

completely by Eq.(14), and henceG,(s) for all r by the
Fourier inversion formula in Eq15). We obtain

- + 2| (r,
G,(S)ZM(lMZ(_p ;I) p “l(r,s) 18
e s/ 1+ #S'(O,S)

1 2

wherel(r,s) is given by Eq.(17).

To obtainG,(t) we need to perform the inverse Laplace behaviors.f

transformG, (t)=L£ ~}[G,(s)] with respect tcs. In general,
for arbitraryt this is difficult. However, for large, this in-

verse can be obtained in closed form. For largene needs
to consider the sma# behavior ofG,(s) in Eq. (18). Let us

first consider the case=0. Puttingr=0 in Eq. (17) and

taking thes— 0 limit we find to leading order,

1(0,8)~ (19

1
2\pi(p+a)s

Substituting this smals expression ofl (0,s) into Eq. (16)

and taking the inverse Laplace transform we find that to

leading order for large,

Vra(p+q)uap 2
(Ml_Mz)\/;

Golt) = Jt. (20

Next, we consider the behavior &, (t) for [r|>0. From

Eq. (17), it is clear that the appropriate scaling limit consists

of taking the limits—0, |r|—c but keeping|r|y/s fixed.
In this scaling limit, Eq.(17) yields,

I(r,s)=

(21)

p( —Ir|\s )
ex .
2\ (p+q)s Vra(p+q)

PHYSICAL REVIEW E64 036103

We note that the formula fdi(r,s) in Eq.(21) reduces to Eq.
(19 for |r|=0. This indicates that even though E81) was
derived in the scaling limit, it continues to hold even for
=0.

Substituting this smalé expression of (r,s) in Eq. (18)
and taking the inverse Laplace transform we obtain for large
ty

pi(p+a) pop 2
2(#«1_#2)

£~ s~ 3% Irl\&ua(PTaTy,
(22)

G/()=

Fortunately, the inverse Laplace transform in E22) can be
done in closed form, which gives us the following
asymptotic scaling behavior of the equal-time correlation
function G,(t),

Ir]
2Vpa(p+ait

pi(p+a)puop 2

G ()=
(ma—p) T

1

(23

Here,f,(y) is a universal scaling function independent of the
model parameters such ps g, and the momentg, of the
pdf f(r) and is given by

fi(y)=e V'~ Jmyerfdy), (24)

where erfcy)=2/\/;f;°e‘“2du is the standard complimen-
tary error function. This scaling function has the asymptotic
(y)~1—Jmy asy—0 and~y 2e Y’/2 fory

— 0,

As a final remark, we note again that if one plris=0 in
the formula forG,(t) in Eq. (23), one recovers the correct
Gy(t) as given by Eq(20). Thus, the scaling range includes
even the =0 point. Equatior(20) thus provides us the exact
behavior of the first two terms in the expression for
o5(to,to+t) in Eq. (7). The remaining task is to evaluate the
third term in Eq.(7) that involves the unequal-time correla-
tion function, and this is done in the next section.

IV. UNEQUAL-TIME CORRELATIONS

In this section, we compute the two-time tag-tag correla-
tion functionC, (tg,to+t) =((to) {i+,(to+1)) for the RAP.
We start at timey and then evolve thé, ., variables by Eq.
(4) for all subsequent time. Let us first rewrite E4) at time
to+t-+dt,

§i+r(to+t+dt):§i+r(to+t)_(p_Q)%dt+ N (to+1).
(25

We then multiply both sides of E@25) by ¢i(ty) and aver-
age over the noise keeping terms only updgdt). In the
limit dt—0, we obtain the exact evolution equation of the
two time correlation function,
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dC;(to,to+t)
T:Ml[PCr+1(toato+t)+qu—1(toato+t)
t=0.

(26)

_(p+q)Cr(to,t0+t)] for

Note that att=0, the unequal-time correlation function re-

duces to the equal-time correlation functiod,(tg,tg)
=G, (tp). Thus, starting at=0 with the initial condition
C,(tg,tg) =G,(tp), the functionC,(ty,tg+t) evolves with
time t according to Eq(26).

PHYSICAL REVIEW E 64 036103

oo(t)=limy ... o5(to,to+ ) crosses over from the subdiffu-
sive behavior to the diffusive behavior as one switches on an
infinitesimal bias and we calculate the crossover scaling
function exactly.

A. SRAP

Here we consider the symmetric cgse g. For the cal-
culation ofaﬁ(to,toﬂ) we only need the asymptotic behav-
ior of C,(tg,tg+t) for r=0 as evident from Eq(7). To
obtainCy(ty,tp+1t), we need to invert the Laplace transform

As in the preceding section, we define the Fourier transin Eq. (30) for r=0 andp=gq. As before, this inversion is

form E(k,to,toth):E‘fz,xcr(to,toﬂ)e‘kr. Taking the
Fourier transform of Eq(26) we obtain
C(K,tg,to+1)=G(k,tg)e #1e®t, (27)

wherea(k)=p+q—(pe *+qe*) andG(kto) is the Fou-

rier transform of the equal-time correlation function as de-
fined by Egq. (9). Taking further the Laplace transform

H(k,s,t)=[5C(K,to,to+t)e~Sdt, of Eq. (27), we obtain
H(k,s,t)=F(k,s)e #1(t (28)

whereF (k,s) is given exactly by Eq(14) with Go(s) deter-
mined from Eq.(16).

difficult in general for allty. However, the finite but largg
limit can be worked out by analyzing the smalbehavior of
Eq. (30). It turns out that the appropriate scaling limit in this
case involves taking—0, t—o but keepingst fixed. In
this scaling limit, the integration in Eq30) can be carried
out in closed form and we obtaifwith p=q),

/— -2
Co(s t)= SrHafp Mip2p

201 )"

We then need to invert the Laplace transform in E2f)
with respect tos to obtain the asymptotic behavior of
Co(tg,to+t) for largety. Fortunately, this inversion can be
done in closed form and we obtain

eSt2 erfg(\/st/2).

(31)

Proceeding as in the previous section, the Laplace trans-

form E:r(s,t)=f§Cr(t0,t0+t)e‘S‘0dt0 can then be deter-
mined from the joint Fourier-Laplace transfoti(k,s,t) by
the inversion formula

1 (= .
cr(s,t)=5f_ H(k,s,t)e ' rdk, (29

whereH (k,s,t) is given by Eq(28). Substituting in Eq(29)
the exact expression df(k,s) from Eq. (14) and that of

Go(s) from Eq. (16), we obtain the following final expres-
sion of the Laplace transform

pimo(p+Q) p? 1
(p1=p2) M2

(1= m2)

e_ikr_Mla(k)tdk

x LT[S+ 2u1(p+Qg)(1—cosk)]”

C,(s,t)=

s/ 1+ sl(0,s)

(30

Note that fot=0, C,(s,t) as given by Eq(30) reduces to

G,(s) given by Eq.(18) as expected. EquatiqB0) is central
to our subsequent analysis for various limiting behaviors.

V. MEAN-SQUARED TRACER AUTOFLUCTUATION

In this section we calculal‘eé(tO ,to+1t) in the RAP using

the exact results for the equal time and two-time correlation

V2puipap?
—K2) J—

where the scaling functioffi,(y) is again universal and is
given by,

co<to,to+t>— —— fz( ) (32

foly)=1+y—ly.

We are now ready to computeg(to,toﬂ) from Eq. (7).
Using the result for the equal-time correlation in E20) and
the one for the two-time correlation in E¢32), we obtain
from Eq. (7) our main result

V2puapap?
— H2) \/—

(33

a'cz)(to tott)=

ot i~ 2\t )}

(34)

wheref,(y) is given by Eq.(33). Note that this result in Eq.
(34) is derived in the scaling limit when botty andt are
large with their ratiot/ty kept fixed.

We now discuss two different limits of Eq34). First, we
consider the steady-state limg— o with t large but fixed.
In this limit, Eq. (34) yields

2\puipop™?

_Mz)\/;\/f.

0'0( )_ lim O'O(to to+t)_

t0—>oc

(35

functions obtained in the previous sections. We consider first

the symmetric case SRAP wifi=q in Sec. V A followed by
the derivation for the asymmetric case ARAP wih-q in

In the opposite limit, when the waiting tintg is finite (away
from the steady statdut the evolved timé goes to infinity,

Sec. VB. In Sec. C, we show how the steady state fluctuatiome obtain from Eq(34):

036103-5



R. RAJESH AND SATYA N. MAJUMDAR PHYSICAL REVIEW E64 036103

/—sz top 2 proach, Schiz started with the evolution equati@8) for the
lim o3(tg,to+1)= 1—\/f (36)  equal time correlation function and then used a chain of ar-
t—e (1= pNm guments to derive the diffusion constadg. His approach

L did not require any knowledge of the two-time correlation
Thus, the mean-squared autofluctuation in these two oppO§inction or even the solution of the equal-time correlation

ing limits differ by a factory2. Equations(34), (35), and  fynction. As evident from the definition in Eq7) that

(36) are among the important results of this paper. o5(to,to+1) requires the knowledge of both the equal and
the two-time correlation functions. Thus, it was rather re-
B. ARAP markable that the correct value of the diffusion constant for

In this section, we calculaie?(to,to+1t) in the asymmet- 4=0 andp=1 was recovered in Ref20]. However this
fic case whenp>g. Once again we have to invert the turns out to b.e purely fortuitous. [\lotg that the evolution
Laplace transform in Eq30) for r=0 but now withp>q.  €duation(8) is independent of the bias in the system. Thus,
In this case it turns out the appropriate scaling limit consistdhe aPproaCh of Schn WO_UId predict that the d_lffu5|on con-
of taking s—0, t—o as in the SRAP but keeping’gt §tant IS alsp completely |n.deper.1dent of the bias @) and
instead of the scaling variab$ in the SRAP. In this scaling is always given byD, [providedt is scaled by p+q)). This

- . LS ) is clearly wrong as evident from the exact expression in Eq.
limit, the integration in Eq(30) with r=0 yields (41). In particular for the symmetric cage=q=1/2, the

B i (P+ Q) op 2 arguments of Ref[20] would predict a diffusive growth of
Co(s,t)= 7 e~ (P=aVmSTPFAt - (37)  o3(t) with the diffusion constanD,. This is again incorrect
2(p1— p2)s since for p=q the diffusion constant is 0 from Ed41),
which is consistent with the correct asymptotic subdiffusive
growth of o3(t) as given exactly by Eq35). The problem in
the derivation of Schz can be traced back to the fact that
‘/Z(p_q)tl his arguments only used equal-time correlatipnbich in-

, volve only (p+q)] and not the two-time correlations. The
2\(p+dto dependence on the biap<{q) of the diffusion constant
(39) D arapCOmes only from the two-time correlations. The deri-
) . ) ,  vation of Ref.[20] misses this important fact and is rather
where the universal scaling functionfi(y)=e™  fortuitous to obtain the correct valuB, of the diffusion

The Laplace transform in Eq37) can be inverted as in Eq.
(22) and we obtain

T -2
mi(p+d)uzp \/% .

Co(tg,tg+t)=
olto:bo (1“1_1“2)\/;

—myerfe(y) is the same as in Eq24). _ constant for the special case wher 1 andg=0.
Substituting the results in E¢38) and Eq.(20) in Eq. (7) We end this section by discussing the other limit when the
we obtain system is away from the steady state, i.e., whers large
5 but finite andt— <. In this limit, we obtain from Eq(39)
" _
o2ty to+t)= ;zl(p q))“jf Vio+t+ it
M1— M) + -2
im o-é(to,to+t)= ma(p+a)uzp N 42)
2 ik Via(p—q)t (39 t—oe (1= p)\T
- o'\~ /—/——— | |
2\(p+a)tg

the same result as in the SRAP in this lifitg. (36)]. Thus,
As in the SRAP, we now discuss the two different limits. away from the steady state the tracer particle does not sense
In the steady state,— with fixed larget we obtain from the presence of bias. The exact result in &) is consistent
Eq. (39), with that of Krug and Garcia using a phenomenological hy-
_2 drodynamic equatiofé].
Map2p “(P—Q)

o5(t)= lim ag(to,t0+t)=ﬁt. (40)
tg—oe H1— K2 C. Crossover Between SRAP and ARAP
Thus. in this casepé(t) grows diffusively for larget In the previous sections, we have seen that the asymptotic

larget behavior ofag(to,toth) does not depend on the bias
(p—q), when the system is away from the steady sttibéte
1o to). However, in the steade statg){«) it behaves rather
(41)  differently in the symmetric and asymmetric cases. In the
steady state of the SRAREQ), a3(t)~tY? while for the

depends explicitly op andg. Forq=0 andp=1, it reduces ARAP (p>q), oj(t)~t. Thus, a natural question is, how
to the expressio®;=p~ 2uqu, /(1 — p,) derived by Krug — does the behavior af3(t) cross over from the subdiffusive
and Garcia using the independent jump approximafigh  growth for p=q to the diffusive growth as one switches on
and later rederived by Scta{20] using a different approach. an infinitesimal bias §—q)? In this section, we compute

We make a brief comment here on the approach used iaxactly the universal scaling function that describes this
Ref. [20] in deriving the diffusion constarD;. In his ap-  crossover behavior af3(t).

ag(t)= Darapt Where the diffusion constant,

DARAPZPQ(D—Q)M,
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To calculate the crossover behavior we return to our cen- aj(t)= lim o3(tg,tg+1)
tral equation(30) with r=0. We have seen in the previous to—o
sections that in the scaling limét—0 andt—« of Eq. (30),
the appropriate scaling variable that is kept fixedsisfor -~ pata(p—a)p 2 v (p—Q)\/E 46)
p=q, where as, it isyst for p>q. Thus, to compute the (w1 ) 20p+q) | (

crossover behavior, we need to keep the leading-order terms

in both of these scaling variables fixed while expanding Eqwhere Y(y) is a universal crossover scaling function given
(30) for smalls and larget. This makes the calculation of the by

crossover behavior somewhat delicate. To leading order, we

find after elementary algebra 1 eV
Y(y)=erf(y) + ——=—. (47)
N

pi(P+duap ? 1

(1—pp)s¥? 27 The jgaling function has the asymptotic behavitfy)
o B ~1/(Jmy) asy—0 andY(y)—1 andy—c. Note that for
XJ“‘ g~ (P~ TPFa Stzz’zdz (43 fxedp—q=>0, if we take the limitt -2 in Eq. (46) [which
e 1+7° ' corresponds ty— < in the scaling function in Eq47)] we
recover the result of Eq40). Similarly, if we take thep
Note that for the symmetric cage=q, the integral in Eq.  —d—0 limit for fixed t in Eq. (46) [corresponding to taking
(43) can be done and we get back H81) of Sec. VA. Y—0 limit in the scaling functionY(y)], we recover, as
Similarly, for the asymmetric case>q, in the limit s—~0  expected, the result of E5) of the symmetric case. Thus,
keeping the scaling variablgst fixed, one drops the second Ed-(46) and the associated scaling functié(y) in Eq. (47)
term in the exponential in the integrand of E43) and per- dgscrilbes the crossover b_ehawor from. the_ su.bdlffus_lve to
forming the resulting integral we recover E@7) of Sec. diffusive growth as one switches on an infinitesimal bias.
V B.
To compute the crossover behavior, we need to keep both VI. GENERALIZATION TO THE TWO-TAG
the terms inside the exponential in the integrand of @8) CORRELATION FUNCTION
and perform the integral. Fortunately, this integral can be So far in thi h trated onl h
done in closed form using the standard convolution theorem. 0 farin this paper we have concentrated only on the

We omit the details here and present only the final result, mean-squared autofluctlzjatlon of a tracer pgrtm_ﬂé(to,to
+t)=([£i(t+1o) — ¢i(to) 7). A natural generalization of the

autofluctuation would be to study the two-tag correlation

Co(s,t)=

Co(sit)= Vra(p+ Q) pap* uuerfc(2“‘0> function defined as
4(#1‘#2)53/2 zﬁ ) ,
o7 (tg, to+t) =([ i (t+1to) — &i(te)]9), (48
Uto 2u+v
rertera Ll “4 — Gy(t+1g) + Golto)— 2C, (to,to+ 1), (49

whereG,(t) and C,(ty,tp+t) are the usual equal-time and
whereu=st/2 andv=(p—q)Vu;S/(p+q)t. We then ex- the two-time correlation functions already defined and de-
pand Eq.(44) further for smalls to obtain the steady-state rived in the previous sections. Note that for 0, the two-tag
to— o behavior. Note that we needed to first do the integrakorrelation in Eq.(48) reduces to the single-tag function
in Eq. (43) and then take the—0 limit. The reverse order 3(ty,to+t).
unfortunately does not work. Expanding Ed4) for smalls, Of particular interest would be to compute the two-tag
keeping only the leading-order termssrand finally invert-  correlation function in the steady state, i.eq?(t)
ing the Laplace transform of the resulting expression, We:"mtoﬁw o?(to,to+1). For the exclusion process, this two-

obtain for largeto tag correlation function was first introduced in RElf8] and
the presence of bias was found to have a dramatic effect on

Coltg,to+t)=

erffw(t)]

Vi (P+ Q) pop 2 t the time dependence af?(t) for a fixedr. It was found
Vio— /e ically that while in the SEF2(t) i i
(11—t )\/; 2 numerica y t atvy ileint e _r(t) increases monotoni-
vom2 cally with t for a fixed tag-shiftr, in the ASEP,af(t) has a
Varu(p—at nonmonotonic dependence bfiL8]. In the ASEPg?(t) first
amm—— , (45 decreases with timg becomes a minimum at some charac-
2\p+q teristic timet*, and then starts increasing again. A harmonic
model was proposed in Rdf18] for which ¢-%(t) could be
wherew(t) =(p—q) Vuit/[2(p+q)]. computed analytically and was found to be in qualitative
We now use the results from Eqg45) and(20) in Eq.(7) agreement with the numerical results of the exclusion pro-
and eventually take the stricg— oo limit to obtain the final cess. But to the best of our knowledge, exact calculation of
form of the steady-state autofluctuation U'rz(t) for the exclusion process is still an unsolved problem.
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However it turns out that for the RAP, it is possible to com- ¥y
pute this functionarz(t) exactly for larget. The exact solu-
tion of arz(t) in the RAP, as shown below, shares the similar A
features as in the exclusion process. /

From Eq.(49), it is evident that we just need to compute
the larget, behavior of the two-time correlation function
C,(tp,tp+1t) for fixed nonzera. In the previous sections, we
have analyzed in detail the=0 case. It turns out that the 7
analysis forr #0 proceeds more or less in the same manner ) /
as in ther=0 case. We start, once again, from the central \ /
equation(30). To avoid separate calculations for the SRAP
and the ARAP, we take the line of approach used to calculate 15p \ /

the crossover behavior in Sec. V C. Fat 0, it turns out that \,

Eq. (43 gets replaced by a similar-looking equation, \/
pa(P+Auap ? 1
(m1—pp)s¥?  2m t

o e—iz\/s7 w1(p+q) R-stZ/2
X
f—w 1+7°

25 /

Gl (1)

Ci(sit)=

FIG. 2. The steady-state two-tag correlation functirﬁ(t) in
Eq. (51) plotted as a function of for fixed r=—2 for parameter
values u;=1/2, u,=1/4, andp=1. The solid line shows the
monotonic growth obrz(t) with t for the SRAP p=q=1/2), while
whereR=r+ u,(p—q)t signifies the drift of the particles to the dashed line shows the nonmonotonic growth for the ARAP (
the right with average velocity,(p—q) for p>q. Clearly, =1 andq=0).
for r=0, Eq.(50) reduces to Eq43). Starting with Eq(50),
we then follow exactly the same steps as used in Sec. V Qeatures in the RAP, derived here exactly, are qualitatively
Since the steps are identical, we skip all the details andimilar to those in the exclusion process studied in RES].
present only the final result. In the strict steady-state limit
to—, we finally obtain the following scaling form

dz (50

VII. CONCLUSIONS

of(t)=lim of(to,to+1) In this paper we have studied analytically the mean-
to® squared fluctuations in the diffusion of both a single-tagged
particle and two-tagged particles in the random average pro-
cess(RAP) for all values of the hopping ratgsandq in one
dimension. We have shown that in the steady state, the au-

(51) tofluctuation of a tagged particle grows subdiffusively as
o5(t)~Asrag? for p=q and diffusively o2(t)~D arast

whereR=r + u,(p—q)t andW(y) is again a universal scal- for p>q whereAsgar=2p 2(Py/ ) ¥2uy /(1 — 1) and

_ N2pu(pFQ)pap
(1= mNT

R
V2ui(p+a)t

ing function given by, Darap=p 2(P—Q)m1mp/(1—m,). These behaviors of
5 o5(t) are similar to those in the simple exclusion process,
W(y)=e Y+ myerf(y). (52 except the prefactord= (2/7)Y4(1—p)/p [12—-14 and D

) =(p—q)(1—p) [15,16 are different in the exclusion pro-

Clearly, u,(p—q)t represents the average drift whilgt)  .osq Besides the steady-state mean-squared two-tag fluctua-
=V2u(p+0)t represents the diffusive length scale. — ion 2(t) in the RAP grows monotonically with for p

We note that the scaling functiow(y) is a symmetric =q and nonmonotonically fop>g, in much the same way
function ofy abouty=0 with a minimum aty=0. For the ;5 iy the exclusion process.
SRAP,p=q, and h(aznceB=r. Thus, for a fixed, it follows These findings raise the question whether or not the RAP
from Eq.(51) that oy (t) increases monotonically with For 5 iy the same universality class as the simple exclusion pro-
the ARAP on the other han@>q andR=r+u,(p—Q)t. If  cess in one dimension. Perhaps the RAP is just a coarse-
one fixesr to a negative value and increasethe variableR  grained version of the exclusion process in one dimension?
remains negative till the characteristic timet* =r/u1(P  The answer to this question seems to be in the negative due
—q), beyond which it becomes positive. The scaling vari-tg a very crucial difference between the two processes. In the
able y=R/\2u,(p+q)t behaves in the same way. Thus, exclusion process fqu>q, it is well known that there exists
o7 (t) in Eq. (51) first decreases with time, becomes a mini-an anomalous?? growth hidden in the problem apart from
mum att=t*=—r/u;(p—q), and then starts increasing the usualt'? andt growth [19,17. This anomalous growth
again. In Fig. 2 we plot the functionf(t) in Eq. (51) for shows up either in the mean-squared fluctuation of the center
both the SRAP(with p=q=1/2) and the ARAP(with p of mass of the particles when viewed from a special moving
=1 andg=0) for the same value af=—2 and choosing frame[19] or alternately in the two-tag correlation function
the parameter valuesu,=1/2, wu,=1/4, p=1. These a'rz(t) if one chooses the tag shiftto be sliding with time
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with a special velocity = — p?(p—q) [17]. It turns out that  dimensions. A natural way to generalize the model to higher
the prefactor of thist?® growth is proportional to dimensions would be as follows. One considers particles lo-
«{[d?j(p)]1/(dp?)} wherej(p) is the current density in a cated in the continuous-dimensional space. In a small-time
hydrodynamical descriptiofiL7]. For the exclusion process, intervaldt, each particle makes a list of all its nearest neigh-
i(p)=p(1-p), and hence, the prefactor is nonzero. For thebors in various directions in space, chooses one of them at
RAP, on the other hand(p)= w1(p—q) and is independent random, and jumps in the corresponding direction by a ran-
of p. This is becausg(p) = p(v) where the average velocity dom fraction of the Euclidean distance to that neighbor. This
(v)=p1(p—0q)/p, as can be easily derived from Eq4) is an isotropic version, a generalization of the SRAP. Simi-
and(2). As a result, for the RAP, the anomalotf§ growth  larly one can define an anisotropic version as well. To the
is absent, which puts it in a different universality class tharbest of our knowledge, the RAP has not been studied so far
the simple exclusion process. In this sense, the RAP seemsito higher dimensions. The question of tracer diffusion in
be closer to the harmonic model studied in Hé&8|. higher dimensions, especially in two dimensions where one

In this paper, we have considered the RAP only in onemay expect a logarithmic correction, also remains com-
dimension. An obvious generalization would be to higherpletely open.
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