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Exact tagged particle correlations in the random average process
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We study analytically the correlations between the positions of tagged particles in the random average
process, an interacting particle system in one dimension. We show that in the steady state, the mean-squared
autofluctuation of a tracer particle grows subdiffusivelys0

2(t);t1/2 for large timet in the absence of external
bias but grows diffusivelys0

2(t);t in the presence of a nonzero bias. The prefactors of the subdiffusive and
diffusive growths, as well as the universal scaling function describing the crossover between them, are com-
puted exactly. We also computes r

2(t), the mean-squared fluctuation in the position difference of two tagged
particles separated by a fixed tag shiftr in the steady state and show that the external bias has a dramatic effect
on the time dependence ofs r

2(t). For fixedr ,s r
2(t) increases monotonically witht in the absence of bias, but

has a nonmonotonic dependence ont in the presence of bias. Similarities and differences with the simple
exclusion process are also discussed.

DOI: 10.1103/PhysRevE.64.036103 PACS number~s!: 64.60.2i, 05.70.Ln
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I. INTRODUCTION

Interacting particle systems in one dimension are am
the simplest examples of many-body systems that are
from equilibrium @1#. One of the most studied examples
the simple exclusion process in one dimension. In this s
tem, each site of a one-dimensional lattice is either occup
by a hardcore particle or is empty. In a small-time interv
dt, each particle attempts to hop to the neighboring latt
site on the right with probabilitypdt, to the left neighboring
site with probabilityqdt, and stays at the original site wit
probability 12(p1q)dt. An attempted hop is complete
provided the target site is empty. A wealth of results a
known for this system@1–3#.

Another interacting particle system in one dimension t
has attracted recent interest is the random average pro
~RAP! @4,5#. In the RAP, particles are located on a real li
as opposed to a lattice in the simple exclusion process.
xi(t) be the position of thei th particle at timet ~see Fig. 1!.
In a small-time intervaldt, each particle jumps to the righ
with probability pdt by an amountr i

1(xi 112xi), to the left
with probability qdt by an amountr i

2(xi2xi 21), and stays
at its original location with probability 12(p1q)dt. Here,
r i

1 andr i
2 are independent random variables drawn from

interval @0,1# with identical probability density function
~pdf! f (r ). Thus, the jumps in either direction is a rando
fraction of the gap to the nearest particle in that directi
For convenience, we have defined the RAP with random
quential dynamics, though it has been studied with para
dynamics as well@4,5#. The detailed study of the RAP i
important since it has shown up either directly or in disgu
in a variety of problems including traffic models@4#, models
of mass transport@5#, models of force fluctuation in bea
packs@6#, models of voting systems@7,8#, models of wealth
distribution @9#, and the generalized Hammersley proce
@10#. Like the simple exclusion process, some aspects of
RAP are analytically tractable@4,5,11#. In this paper, we
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derive some exact results on the tracer fluctuations in
RAP where the dynamics of tagged particles are followe

The tracer diffusion has been studied in detail for t
simple exclusion process and many interesting results
known @1#. In the exclusion process, the combined effect
hardcore interaction and the external bias (p2q) shows up
rather dramatically in the asymptotic long-time behavior
the mean squared autofluctuation in the position of a tra
particle in the steady state. Ifz i(t)5xi(t)2^xi(t)& denotes
the deviation in the positionxi(t) of the i th particle from its
average value, then the mean squared autofluctuation is
fined as,s0

2(t0 ,t01t)5^@z i(t01t)2z i(t0)#2&, where t0 is
the waiting time after which one starts measuring the fl
tuations. In the steady statet0→`, the asymptotic behavio
of s0

2(t)5 limt0→` s0
2(t0 ,t01t) for large t is known @1#. In

the absence of external bias (p5q51/2), i.e., for the sym-
metric exclusion process~SEP!, s0

2(t);At1/2 for large t
where the constantA5(2/p)1/2(12r)/r is known exactly in
terms of the densityr of the particles@12–14#. This slow
subdiffusive growth is due to the caging effect arising fro
hard-core exclusion in one dimension where a particle is
ways hemmed in by its neighbors. However, in the asymm
ric case~ASEP! when a nonzero biasp2q.0 is switched
on, one finds, somewhat unexpectedly,s0

2(t);Dt for larget
where the tracer diffusion coefficientD5(p2q)(12r)
@15,16#. The crossover from the subdiffusive to diffusive b
havior of s0

2(t), as an infinitesimal bias is switched on, w
understood in a physically transparent way via a rather
usual mapping of the exclusion process to
(111)-dimensional interface model@17,18#. This mapping
also established that an appropriately defined sliding tagg
particle correlation function varies anomalously ast2/3 @17#.

FIG. 1. The stochastic moves in the RAP.
©2001 The American Physical Society03-1



-
he

re
h

y

vi
g
t

on
ts

el
d

nc

fo

tio

.

a

n

on
f

r
e

e
e
s

n
w
fo
e

th

gle
ly,
ss-
on-
ns.
ec.

y

by

its

of
o-
ct

b-

n

R. RAJESH AND SATYA N. MAJUMDAR PHYSICAL REVIEW E64 036103
This anomaloust2/3 growth also shows up in the mean
square fluctuation of the center of mass of the particles w
viewed from a special moving frame@19#.

A question then arises naturally is what are the cor
sponding results on the tracer diffusion for the RAP? T
only known result is for the fully asymmetric RAP withq
50 ~and time rescaled byp) where the particles move onl
to the right. In this limit,s0

2(t) was computed by Krug and
Garcia using a phenomenological hydrodynamic Lange
equation based on heuristic arguments, as well as usin
independent jump approximation@4#. Their result shows tha
s0

2(t);D1t for larget with D15r22m1m2 /(m12m2) where
r is the density of the particles andmk5*0

1drr kf (r ) is the
kth moment of the pdff (r ). Later, Schu¨tz attempted to de-
rive this result rigorously@20# by writing down the exact
equation of evolution of the equal time-correlation functi
Gr(t)5^z0(t)z r(t)& and then using a chain of argumen
Note that the definition s0

2(t0 ,t01t)5^@z i(t01t)
2z i(t0)#2& involves both the variancêz i

2(t)&, which is an
equal time observable, as well as the unequal time corr
tion ^z i(t0)z i(t01t)&. Thus, a proper approach, as followe
in this paper, would be to compute these correlation fu
tions exactly and then take the steady-statet0→` limit.

The main results of this paper can be summarized as
lows.

~1! We compute exactly the mean-squared autofluctua
in the displacement of a single tracer particle,s0

2(t0 ,t01t)
5^@z i(t01t)2z i(t0)#2& for larget0 andt for all values ofp
and q in the RAP. In the steady-statet0→`, we show that
s0

2(t)5 limt0→` s0
2(t0 ,t01t);ASRAPt

1/2 for large t for the

symmetric RAP~SRAP! with p5q. For the asymmetric RAP
~ARAP! where p.q, we find s0

2(t);DARAPt for large t.
The constantsASRAP52r22(pm1 /p)1/2m2 /(m12m2) and
DARAP5r22(p2q)m1m2 /(m12m2) are computed exactly
For the special caseq50 andp51, DARAP reduces toD1
computed earlier in Refs.@4,20#.

~2! We compute exactly the universal scaling function th
describes the crossover behavior ofs0

2(t) from the subdiffu-
sive t1/2 growth to the diffusivet growth as one switches o
an infinitesimal bias (p2q).

~3! We generalize the single tracer particle fluctuati
s0

2(t0 ,t01t) to the fluctuation in the position difference o
two tagged particles defined ass r

2(t0 ,t01t)5^@z i 1r(t01t)
2z i(t0)#2&. We show that in the steady state,s r

2(t)
5 limt0→` s r

2(t0 ,t01t) grows monotonically witht for a
fixed tag shiftr for the SRAP. For the ARAP on the othe
hand, it grows witht in a nonmonotonic fashion with a singl
minimum at a characteristic timet* 5r /m1(p2q).

~4! We also compute various scaling functions that d
scribe the crossover of the tracer fluctuations from th
nonsteady-state behavior to the steady-state behavior a
waiting time t0→`.

The paper is organized as follows. In Sec. II, we defi
the model precisely and set up our notations. In Sec. III,
calculate the equal-time correlation function for the RAP
all p andq. Section IV contains the exact calculation of th
unequal-time correlation function. In Sec. V, we compute
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mean-squared fluctuation in the displacement of a sin
tracer particle. Sections V A and V B contain, respective
the discussions on the SRAP and the ARAP, while the cro
over between them is discussed in Sec. VC. Section VI c
tains the generalization to the two-tag correlation functio
Finally, we conclude with a summary and discussion in S
VII.

II. THE MODEL AND PRELIMINARIES

We consider a system of particles of average densitr
located on a real line. Letxi(t) denote the position of thei th
particle at timet ~see Fig. 1!. In an infinitesimal time interval
dt, each particle jumps with probabilitypdt to the right, with
probability qdt to the left, and with probability 12(p
1q)dt, it rests at its original location. The actual amount
which a particle jumps~either to the right or to the left! is a
random fraction of the gap between the particle and
neighboring particle~to the right or to the left!. For example,
the jump to the right is by an amountr i

1(xi 112xi) and to
the left byr i

2(xi2xi 21). The random variablesr i
6 are inde-

pendently drawn from the interval@0,1# and each is distrib-
uted according to the same pdff (r ), which is arbitrary. We
start from an arbitrary but fixed initial condition att50 and
averaging of physical quantities is done over all histories
evolution keeping the initial condition fixed. The time ev
lution of the positionsxi(t)’s can be represented by the exa
Langevin equation

xi~ t1dt!5xi~ t !1g i~ t !, ~1!

whereg i(t) are random variables given by

g i~ t !5H r i
1@xi 11~ t !2xi~ t !# with prob pdt,

r i
2@xi 21~ t !2xi~ t !# with prob qdt,

0 with prob 12~p1q!dt.

~2!

The random variablesr i
6 are independent and each is distri

uted over the interval@0,1# with the same pdff (r ). Thekth
moment of the pdf is denoted bymk5*0

1drr kf (r ). Note that
since 0<r<1 and f (r )>0, m1>m2.

We define a new random variablez i(t) that measures the
deviation ofxi(t) from its mean value

z i~ t !5xi~ t !2^xi~ t !&. ~3!

From Eqs.~1! and ~2!, one can easily derive the evolutio
rules for thez i variables. We find

z i~ t1dt!5z i~ t !2~p2q!
m1

r
dt1h i~ t !, ~4!

whereh i(t) is given by

h i~ t !5H r i
1~z i 11~ t !2z i~ t !1r21! with prob pdt,

r i
2~z i 21~ t !2z i~ t !2r21! with prob qdt,

0 with prob 12~p1q!dt.
~5!
3-2
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EXACT TAGGED PARTICLE CORRELATIONS IN THE . . . PHYSICAL REVIEW E 64 036103
By definition, ^z i(t)&50. Also from Eq.~5!, it follows that
^h i(t)&5(p2q)@(m1)/(r)#dt.

In this paper, we will focus on the mean-squared displa
ment of a tagged particle. It turns out that the asympto
behavior of the mean-squared displacement depends
cially on whether one starts measuring these fluctuations
ter some finite waiting timet0 or if one first waits for an
infinite time and then starts measuring the statistics. The
ter corresponds to measuring the fluctuations in the ste
state. This is similar to the ‘‘approach to stationary’’ vers
‘‘stationary’’ regimes found in various interface models@21#.
This can be quantified precisely in terms of the followi
correlation function:

s0
2~ t0 ,t01t !5^@z i~ t1t0!2z i~ t0!#2&, ~6!

5G0~ t1t0!1G0~ t0!22C0~ t0 ,t01t !, ~7!

where Gr(t)5^z i(t)z i 1r(t)& is the equal-time correlation
function andCr(t0 ,t01t)5^z i(t0)z i 1r(t01t) with t.0 de-
notes the unequal-time correlation function. Fort50, the
unequal-time correlation function reduces to the equal-t
correlation function,Cr(t0 ,t0)5Gr(t0). Note that we have
assumed an infinite system so that the translational inv
ance holds. In the next two sections, we calculate ana
cally the correlation functionsGr(t) and Cr(t0 ,t01t), re-
spectively.

III. EQUAL-TIME CORRELATION FUNCTION

In this section, we calculate the equal-time correlat
function Gr(t)5^z i(t)z i 1r(t)& exactly for the RAP for allp
andq. Our starting point is Eq.~4! in conjunction with Eq.
~5! describing the evolution of thez i variables with time. We
consider the evolution equations@Eq. ~4!# for both z i(t
1dt) andz i 1r(t1dt), multiply them, and then take the av
erage^& over all histories, keeping terms only up toO(dt).
This yields, in the limitdt→0, the exact evolution equatio
of the correlation functionGr(t) and we obtain,

d

dt
Gr~ t !5m1~p1q!@Gr 11~ t !1Gr 21~ t !22Gr~ t !#

1d r ,0m2~p1q!@r2212$G0~ t !2G1~ t !%#.

~8!

Equation~8! is valid for all positive and negative integersr
including r 50 and clearlyGr(t)5G2r(t). Thus, the equa-
tion of evolution for the two-point correlations involve on
two-point correlations and not higher-order correlations. T
closure property is crucial for obtaining an exact solution
the correlation functions. The key reason behind this clos
lies in the fact that the random fractionsr i

6’s at time t are
independent of thez i(t). One noteworthy fact about Eq.~8!
is that the ratesp and q make their appearance only as
overall multiplicative factor (p1q). We could absorb this
factor into the time by doing a suitable rescaling, and hen
the equal-time correlation functionGr(t) is same for both
the ARAP and the SRAP.
03610
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We note that this equation was also derived in Ref.@20#
by a rather lengthy method, but was left unsolved. In t
section, we derive an exact solution of Eq.~8!. Note that
even though Eq.~8! represents the diffusion equation~in
discrete space! with a source term at the originr 50, its
solution is nontrivial due to the fact that the source te
depends onG0(t) and G1(t), which need to be determine
self consistently. Similar diffusion equations with sour
term for the correlation functions have also appeared rece
in the context of aggregation models with injection@22#. Be-
fore proceeding to solve Eq.~8!, we first set up our notations
We define the standard Fourier transform

Ḡ~k,t !5 (
r 52`

`

Gr~ t !eikr , ~9!

the Laplace transform

G̃r~s!5E
0

`

Gr~ t !e2stdt, ~10!

and the joint Fourier-Laplace transform,

F~k,s!5E
0

`

Ḡ~k,t !e2stdt5 (
r 52`

`

G̃r~s!eikr . ~11!

Taking the joint Fourier-Laplace transform of Eq.~8!, we
obtain

F~k,s!5
m2~p1q!@r2212s~G̃0~s!2G̃1~s!!#

s@s12m1~p1q!~12cosk!#
, ~12!

where we have assumed that initiallyGr(0)50, which is
true for any fixed initial condition. For random initial cond
tion, F(k,s) will contain additional terms arising from th
initial condition, but one can show that they do not contr
ute to the asymptotic large-time properties ofGr(t) as long
as the initial condition has only short-ranged correlations.
therefore useGr(0)50 without any loss of generality.

Equation~12! contains two unknownsG̃0(s) and G̃1(s).
One of them, sayG̃1(s), can however be expressed in term
of G̃0(s) by taking directly the Laplace transform of Eq.~8!
for r 50 and usingG1(t)5G21(t). This gives the relation

sG̃0~s!5~p1q!Fm2r22

s
22~m12m2!~G̃0~s!2G̃1~s!!G .

~13!

Substituting Eq.~13! into Eq. ~12! we obtain

F~k,s!5
m2

~m12m2!

@m1~p1q!r222s2G̃0~s!#

s@s12m1~p1q!~12cosk!#
.

~14!

We now have to determineG̃0(s) self consistently. This can
be done by using the inverse Fourier transform
3-3
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G̃r~s!5
1

2pE2p

p

F~k,s!e2 ikrdk. ~15!

Substituting the expression ofF(k,s) from Eq. ~14! in Eq.
~15! at r 50, we obtain the exactG̃0(s)

G̃0~s!5
m1m2~p1q!

~m12m2!

r22I ~0,s!

sF11
m2

~m12m2!
sI~0,s!G , ~16!

whereI (r ,s) is given by the integral

I ~r ,s!5
1

2pE2p

p e2 ikrdk

@s12m18~12cosk!#

5
1

As214m18s
S 2m181s2As214m18s

2m18
D ur u

, ~17!

where m185m1(p1q). Knowing G̃0(s) determinesF(k,s)

completely by Eq.~14!, and hence,G̃r(s) for all r by the
Fourier inversion formula in Eq.~15!. We obtain

G̃r~s!5
m1m2~p1q!

~m12m2!

r22I ~r ,s!

sF11
m2

~m12m2!
sI~0,s!G , ~18!

whereI (r ,s) is given by Eq.~17!.
To obtainGr(t) we need to perform the inverse Lapla

transformGr(t)5L 21@G̃r(s)# with respect tos. In general,
for arbitrary t this is difficult. However, for larget, this in-
verse can be obtained in closed form. For larget, one needs
to consider the smalls behavior ofG̃r(s) in Eq. ~18!. Let us
first consider the caser 50. Putting r 50 in Eq. ~17! and
taking thes→0 limit we find to leading order,

I ~0,s!;
1

2Am1~p1q!s
. ~19!

Substituting this smalls expression ofI (0,s) into Eq. ~16!
and taking the inverse Laplace transform we find that
leading order for larget,

G0~ t !5
Am1~p1q!m2r22

~m12m2!Ap
At. ~20!

Next, we consider the behavior ofGr(t) for ur u.0. From
Eq. ~17!, it is clear that the appropriate scaling limit consis
of taking the limit s→0, ur u→` but keepingur uAs fixed.
In this scaling limit, Eq.~17! yields,

I ~r ,s!5
1

2Am1~p1q!s
expS 2ur uAs

Am1~p1q!
D . ~21!
03610
o

We note that the formula forI (r ,s) in Eq. ~21! reduces to Eq.
~19! for ur u50. This indicates that even though Eq.~21! was
derived in the scaling limit, it continues to hold even forr
50.

Substituting this smalls expression ofI (r ,s) in Eq. ~18!
and taking the inverse Laplace transform we obtain for la
t,

Gr~ t !5
Am1~p1q!m2r22

2~m12m2!
L 21@s23/2e2ur uAs/[m1(p1q)] #.

~22!

Fortunately, the inverse Laplace transform in Eq.~22! can be
done in closed form, which gives us the followin
asymptotic scaling behavior of the equal-time correlat
function Gr(t),

Gr~ t !5
Am1~p1q!m2r22

~m12m2!Ap
At f 1S ur u

2Am1~p1q!t
D .

~23!

Here,f 1(y) is a universal scaling function independent of t
model parameters such asp, q, and the momentsmk of the
pdf f (r ) and is given by

f 1~y!5e2y2
2Apy erfc~y!, ~24!

where erfc(y)52/Ap*y
`e2u2

du is the standard complimen
tary error function. This scaling function has the asympto
behaviors,f 1(y);12Apy asy→0 and;y22e2y2

/2 for y
→`.

As a final remark, we note again that if one putsur u50 in
the formula forGr(t) in Eq. ~23!, one recovers the correc
G0(t) as given by Eq.~20!. Thus, the scaling range include
even ther 50 point. Equation~20! thus provides us the exac
behavior of the first two terms in the expression f
s0

2(t0 ,t01t) in Eq. ~7!. The remaining task is to evaluate th
third term in Eq.~7! that involves the unequal-time correla
tion function, and this is done in the next section.

IV. UNEQUAL-TIME CORRELATIONS

In this section, we compute the two-time tag-tag corre
tion functionCr(t0 ,t01t)5^z i(t0)z i 1r(t01t)& for the RAP.
We start at timet0 and then evolve thez i 1r variables by Eq.
~4! for all subsequent time. Let us first rewrite Eq.~4! at time
t01t1dt,

z i 1r~ t01t1dt!5z i 1r~ t01t !2~p2q!
m1

r
dt1h i 1r~ t01t !.

~25!

We then multiply both sides of Eq.~25! by z i(t0) and aver-
age over the noise keeping terms only up toO(dt). In the
limit dt→0, we obtain the exact evolution equation of th
two time correlation function,
3-4
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dCr~ t0 ,t01t !

dt
5m1@pCr 11~ t0 ,t01t !1qCr 21~ t0 ,t01t !

2~p1q!Cr~ t0 ,t01t !# for t>0.

~26!

Note that att50, the unequal-time correlation function re
duces to the equal-time correlation functionCr(t0 ,t0)
5Gr(t0). Thus, starting att50 with the initial condition
Cr(t0 ,t0)5Gr(t0), the functionCr(t0 ,t01t) evolves with
time t according to Eq.~26!.

As in the preceding section, we define the Fourier tra
form C̄(k,t0 ,t01t)5( r 52`

` Cr(t0 ,t01t)eikr . Taking the
Fourier transform of Eq.~26! we obtain

C̄~k,t0 ,t01t !5Ḡ~k,t0!e2m1a(k)t, ~27!

wherea(k)5p1q2(pe2 ik1qeik) andḠ(k,t0) is the Fou-
rier transform of the equal-time correlation function as d
fined by Eq. ~9!. Taking further the Laplace transform
H(k,s,t)5*0

`C̄(k,t0 ,t01t)e2st0dt0 of Eq. ~27!, we obtain

H~k,s,t !5F~k,s!e2m1a(k)t, ~28!

whereF(k,s) is given exactly by Eq.~14! with G̃0(s) deter-
mined from Eq.~16!.

Proceeding as in the previous section, the Laplace tra
form C̃r(s,t)5*0

`Cr(t0 ,t01t)e2st0dt0 can then be deter
mined from the joint Fourier-Laplace transformH(k,s,t) by
the inversion formula

C̃r~s,t !5
1

2pE2p

p

H~k,s,t !e2 ikrdk, ~29!

whereH(k,s,t) is given by Eq.~28!. Substituting in Eq.~29!
the exact expression ofF(k,s) from Eq. ~14! and that of
G̃0(s) from Eq. ~16!, we obtain the following final expres
sion of the Laplace transform

C̃r~s,t !5
m1m2~p1q!

~m12m2!

r22

sF11
m2

~m12m2!
sI~0,s!G

1

2p

3E
2p

p e2 ikr 2m1a(k)tdk

@s12m1~p1q!~12cosk!#
. ~30!

Note that fort50, C̃r(s,t) as given by Eq.~30! reduces to
G̃r(s) given by Eq.~18! as expected. Equation~30! is central
to our subsequent analysis for various limiting behaviors

V. MEAN-SQUARED TRACER AUTOFLUCTUATION

In this section we calculates0
2(t0 ,t01t) in the RAP using

the exact results for the equal time and two-time correlat
functions obtained in the previous sections. We consider
the symmetric case SRAP withp5q in Sec. V A followed by
the derivation for the asymmetric case ARAP withp.q in
Sec. V B. In Sec. C, we show how the steady state fluctua
03610
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s0
2(t)5 limt0→` s0

2(t0 ,t01t) crosses over from the subdiffu
sive behavior to the diffusive behavior as one switches on
infinitesimal bias and we calculate the crossover sca
function exactly.

A. SRAP

Here we consider the symmetric casep5q. For the cal-
culation ofs0

2(t0 ,t01t) we only need the asymptotic beha
ior of Cr(t0 ,t01t) for r 50 as evident from Eq.~7!. To
obtainC0(t0 ,t01t), we need to invert the Laplace transfor
in Eq. ~30! for r 50 andp5q. As before, this inversion is
difficult in general for allt0. However, the finite but larget0
limit can be worked out by analyzing the smalls behavior of
Eq. ~30!. It turns out that the appropriate scaling limit in th
case involves takings→0, t→` but keepingst fixed. In
this scaling limit, the integration in Eq.~30! can be carried
out in closed form and we obtain~with p5q),

C̃0~s,t !5
A2pm1m2r22

2~m12m2!s3/2
est/2 erfc~Ast/2!. ~31!

We then need to invert the Laplace transform in Eq.~31!
with respect tos to obtain the asymptotic behavior o
C0(t0 ,t01t) for large t0. Fortunately, this inversion can b
done in closed form and we obtain

C0~ t0 ,t01t !5
A2pm1m2r22

~m12m2!Ap
At0f 2S t

2t0
D , ~32!

where the scaling functionf 2(y) is again universal and is
given by,

f 2~y!5A11y2Ay. ~33!

We are now ready to computes0
2(t0 ,t01t) from Eq. ~7!.

Using the result for the equal-time correlation in Eq.~20! and
the one for the two-time correlation in Eq.~32!, we obtain
from Eq. ~7! our main result

s0
2~ t0 ,t01t !5

A2pm1m2r22

~m12m2!Ap
FAt01t1At022At0f 2S t

2t0
D G ,

~34!

wheref 2(y) is given by Eq.~33!. Note that this result in Eq
~34! is derived in the scaling limit when botht0 and t are
large with their ratiot/t0 kept fixed.

We now discuss two different limits of Eq.~34!. First, we
consider the steady-state limitt0→` with t large but fixed.
In this limit, Eq. ~34! yields

s0
2~ t !5 lim

t0→`

s0
2~ t0 ,t01t !5

2Apm1m2r22

~m12m2!Ap
At. ~35!

In the opposite limit, when the waiting timet0 is finite ~away
from the steady state! but the evolved timet goes to infinity,
we obtain from Eq.~34!:
3-5
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lim
t→`

s0
2~ t0 ,t01t !5

A2pm1m2r22

~m12m2!Ap
At. ~36!

Thus, the mean-squared autofluctuation in these two op
ing limits differ by a factorA2. Equations~34!, ~35!, and
~36! are among the important results of this paper.

B. ARAP

In this section, we calculates0
2(t0 ,t01t) in the asymmet-

ric case whenp.q. Once again we have to invert th
Laplace transform in Eq.~30! for r 50 but now withp.q.
In this case it turns out the appropriate scaling limit cons
of taking s→0, t→` as in the SRAP but keepingAst
instead of the scaling variablest in the SRAP. In this scaling
limit, the integration in Eq.~30! with r 50 yields

C̃0~s,t !5
Am1~p1q!m2r22

2~m12m2!s3/2
e2(p2q)Am1s/(p1q)t. ~37!

The Laplace transform in Eq.~37! can be inverted as in Eq
~22! and we obtain

C0~ t0 ,t01t !5
Am1~p1q!m2r22

~m12m2!Ap
At0f 1FAm1~p2q!t

2A~p1q!t0
G ,

~38!

where the universal scaling functionf 1(y)5e2y2

2Apy erfc(y) is the same as in Eq.~24!.
Substituting the results in Eq.~38! and Eq.~20! in Eq. ~7!

we obtain

s0
2~ t0 ,t01t !5

Am1~p1q!m2r22

~m12m2!Ap
FAt01t1At0

22At0f 1S Am1~p2q!t

2A~p1q!t0
D G . ~39!

As in the SRAP, we now discuss the two different limi
In the steady statet0→` with fixed larget we obtain from
Eq. ~39!,

s0
2~ t !5 lim

t0→`

s0
2~ t0 ,t01t !5

m1m2r22~p2q!

~m12m2!
t. ~40!

Thus, in this case,s0
2(t) grows diffusively for large t,

s0
2(t)5DARAPt where the diffusion constant,

DARAP5r22~p2q!
m1m2

~m12m2!
, ~41!

depends explicitly onp andq. Forq50 andp51, it reduces
to the expressionD15r22m1m2 /(m12m2) derived by Krug
and Garcia using the independent jump approximation@4#
and later rederived by Schu¨tz @20# using a different approach

We make a brief comment here on the approach use
Ref. @20# in deriving the diffusion constantD1. In his ap-
03610
s-

s

in

proach, Schu¨tz started with the evolution equation~8! for the
equal time correlation function and then used a chain of
guments to derive the diffusion constantD1. His approach
did not require any knowledge of the two-time correlati
function or even the solution of the equal-time correlati
function. As evident from the definition in Eq.~7! that
s0

2(t0 ,t01t) requires the knowledge of both the equal a
the two-time correlation functions. Thus, it was rather
markable that the correct value of the diffusion constant
q50 and p51 was recovered in Ref.@20#. However this
turns out to be purely fortuitous. Note that the evoluti
equation~8! is independent of the bias in the system. Th
the approach of Schu¨tz would predict that the diffusion con
stant is also completely independent of the bias (p2q) and
is always given byD1 @providedt is scaled by (p1q)#. This
is clearly wrong as evident from the exact expression in
~41!. In particular for the symmetric casep5q51/2, the
arguments of Ref.@20# would predict a diffusive growth of
s0

2(t) with the diffusion constantD1. This is again incorrect
since for p5q the diffusion constant is 0 from Eq.~41!,
which is consistent with the correct asymptotic subdiffus
growth ofs0

2(t) as given exactly by Eq.~35!. The problem in
the derivation of Schu¨tz can be traced back to the fact th
his arguments only used equal-time correlations@which in-
volve only (p1q)# and not the two-time correlations. Th
dependence on the bias (p2q) of the diffusion constant
DARAP comes only from the two-time correlations. The de
vation of Ref.@20# misses this important fact and is rath
fortuitous to obtain the correct valueD1 of the diffusion
constant for the special case whenp51 andq50.

We end this section by discussing the other limit when
system is away from the steady state, i.e., whent0 is large
but finite andt→`. In this limit, we obtain from Eq.~39!

lim
t→`

s0
2~ t0 ,t01t !5

Am1~p1q!m2r22

~m12m2!Ap
At, ~42!

the same result as in the SRAP in this limit@Eq. ~36!#. Thus,
away from the steady state the tracer particle does not s
the presence of bias. The exact result in Eq.~42! is consistent
with that of Krug and Garcia using a phenomenological h
drodynamic equation@4#.

C. Crossover Between SRAP and ARAP

In the previous sections, we have seen that the asymp
larget behavior ofs0

2(t0 ,t01t) does not depend on the bia
(p2q), when the system is away from the steady state~finite
t0). However, in the steade state (t0→`) it behaves rather
differently in the symmetric and asymmetric cases. In
steady state of the SRAP (p5q), s0

2(t);t1/2 while for the
ARAP (p.q), s0

2(t);t. Thus, a natural question is, how
does the behavior ofs0

2(t) cross over from the subdiffusive
growth for p5q to the diffusive growth as one switches o
an infinitesimal bias (p2q)? In this section, we compute
exactly the universal scaling function that describes t
crossover behavior ofs0

2(t).
3-6
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To calculate the crossover behavior we return to our c
tral equation~30! with r 50. We have seen in the previou
sections that in the scaling limits→0 andt→` of Eq. ~30!,
the appropriate scaling variable that is kept fixed isst for
p5q, where as, it isAst for p.q. Thus, to compute the
crossover behavior, we need to keep the leading-order te
in both of these scaling variables fixed while expanding E
~30! for smalls and larget. This makes the calculation of th
crossover behavior somewhat delicate. To leading order
find after elementary algebra

C̃0~s,t !5
Am1~p1q!m2r22

~m12m2!s3/2

1

2p

3E
2`

` e2 i (p2q)Am1s/(p1q)tz2stz2/2

11z2 dz. ~43!

Note that for the symmetric casep5q, the integral in Eq.
~43! can be done and we get back Eq.~31! of Sec. V A.
Similarly, for the asymmetric casep.q, in the limit s→0
keeping the scaling variableAst fixed, one drops the secon
term in the exponential in the integrand of Eq.~43! and per-
forming the resulting integral we recover Eq.~37! of Sec.
V B.

To compute the crossover behavior, we need to keep b
the terms inside the exponential in the integrand of Eq.~43!
and perform the integral. Fortunately, this integral can
done in closed form using the standard convolution theor
We omit the details here and present only the final resul

C̃0~s,t !5
Am1~p1q!m2r22

4~m12m2!s3/2 Feu2v erfcS 2u2v

2Au
D

1eu1verfcS 2u1v

2Au
D G , ~44!

where u5st/2 and v5(p2q)Am1s/(p1q)t. We then ex-
pand Eq.~44! further for smalls to obtain the steady-stat
t0→` behavior. Note that we needed to first do the integ
in Eq. ~43! and then take thes→0 limit. The reverse order
unfortunately does not work. Expanding Eq.~44! for smalls,
keeping only the leading-order terms ins and finally invert-
ing the Laplace transform of the resulting expression,
obtain for larget0

C0~ t0 ,t01t !5
Am1~p1q!m2r22

~m12m2!Ap
FAt02A t

2
e2w2(t)

2
Apm1~p2q!t

2Ap1q
erf@w~ t !#G , ~45!

wherew(t)5(p2q)Am1t/@2(p1q)#.
We now use the results from Eqs.~45! and~20! in Eq. ~7!

and eventually take the strictt0→` limit to obtain the final
form of the steady-state autofluctuation
03610
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s0
2~ t !5 lim

t0→`

s0
2~ t0 ,t01t !

5
m1m2~p2q!r22

~m12m2!
tYF ~p2q!Am1t

A2~p1q!
G , ~46!

whereY(y) is a universal crossover scaling function give
by

Y~y!5erf~y!1
1

Ap

e2y2

y
. ~47!

The scaling function has the asymptotic behaviorY(y)
;1/(Apy) as y→0 andY(y)→1 andy→`. Note that for
fixed p2q.0, if we take the limitt→` in Eq. ~46! @which
corresponds toy→` in the scaling function in Eq.~47!# we
recover the result of Eq.~40!. Similarly, if we take thep
2q→0 limit for fixed t in Eq. ~46! @corresponding to taking
y→0 limit in the scaling functionY(y)#, we recover, as
expected, the result of Eq.~35! of the symmetric case. Thus
Eq. ~46! and the associated scaling functionY(y) in Eq. ~47!
describes the crossover behavior from the subdiffusive
diffusive growth as one switches on an infinitesimal bias

VI. GENERALIZATION TO THE TWO-TAG
CORRELATION FUNCTION

So far in this paper we have concentrated only on
mean-squared autofluctuation of a tracer particle,s0

2(t0 ,t0

1t)5^@z i(t1t0)2z i(t0)#2&. A natural generalization of the
autofluctuation would be to study the two-tag correlati
function defined as

s r
2~ t0 ,t01t !5^@z i 1r~ t1t0!2z i~ t0!#2&, ~48!

5G0~ t1t0!1G0~ t0!22Cr~ t0 ,t01t !, ~49!

whereGr(t) and Cr(t0 ,t01t) are the usual equal-time an
the two-time correlation functions already defined and
rived in the previous sections. Note that forr 50, the two-tag
correlation in Eq.~48! reduces to the single-tag functio
s0

2(t0 ,t01t).
Of particular interest would be to compute the two-t

correlation function in the steady state, i.e.,s r
2(t)

5 limt0→` s r
2(t0 ,t01t). For the exclusion process, this two

tag correlation function was first introduced in Ref.@18# and
the presence of bias was found to have a dramatic effec
the time dependence ofs r

2(t) for a fixed r. It was found
numerically that while in the SEPs r

2(t) increases monotoni
cally with t for a fixed tag-shiftr, in the ASEP,s r

2(t) has a
nonmonotonic dependence ont @18#. In the ASEP,s r

2(t) first
decreases with timet, becomes a minimum at some chara
teristic timet* , and then starts increasing again. A harmo
model was proposed in Ref.@18# for which s r

2(t) could be
computed analytically and was found to be in qualitati
agreement with the numerical results of the exclusion p
cess. But to the best of our knowledge, exact calculation
s r

2(t) for the exclusion process is still an unsolved proble
3-7
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However it turns out that for the RAP, it is possible to com
pute this functions r

2(t) exactly for larget. The exact solu-
tion of s r

2(t) in the RAP, as shown below, shares the simi
features as in the exclusion process.

From Eq.~49!, it is evident that we just need to compu
the larget0 behavior of the two-time correlation functio
Cr(t0 ,t01t) for fixed nonzeror. In the previous sections, w
have analyzed in detail ther 50 case. It turns out that th
analysis forr 5” 0 proceeds more or less in the same man
as in ther 50 case. We start, once again, from the cen
equation~30!. To avoid separate calculations for the SRA
and the ARAP, we take the line of approach used to calcu
the crossover behavior in Sec. V C. Forr 5” 0, it turns out that
Eq. ~43! gets replaced by a similar-looking equation,

C̃r~s,t !5
Am1~p1q!m2r22

~m12m2!s3/2

1

2p

3E
2`

` e2 izAs/[m1(p1q)]R2stz2/2

11z2 dz, ~50!

whereR5r 1m1(p2q)t signifies the drift of the particles to
the right with average velocitym1(p2q) for p.q. Clearly,
for r 50, Eq.~50! reduces to Eq.~43!. Starting with Eq.~50!,
we then follow exactly the same steps as used in Sec.
Since the steps are identical, we skip all the details
present only the final result. In the strict steady-state li
t0→`, we finally obtain the following scaling form

s r
2~ t !5 lim

t0→`

s r
2~ t0 ,t01t !

5
A2m1~p1q!m2r22

~m12m2!Ap
AtWS R

A2m1~p1q!t
D ,

~51!

whereR5r 1m1(p2q)t andW(y) is again a universal scal
ing function given by,

W~y!5e2y2
1Apy erf~y!. ~52!

Clearly, m1(p2q)t represents the average drift whilel (t)
5A2m1(p1q)t represents the diffusive length scale.

We note that the scaling functionW(y) is a symmetric
function of y abouty50 with a minimum aty50. For the
SRAP,p5q, and hence,R5r . Thus, for a fixedr, it follows
from Eq. ~51! thats r

2(t) increases monotonically witht. For
the ARAP on the other hand,p.q andR5r 1m1(p2q)t. If
one fixesr to a negative value and increasest, the variableR
remains negative till the characteristic timet5t* 5r /m1(p
2q), beyond which it becomes positive. The scaling va
able y5R/A2m1(p1q)t behaves in the same way. Thu
s r

2(t) in Eq. ~51! first decreases with time, becomes a mi
mum at t5t* 52r /m1(p2q), and then starts increasin
again. In Fig. 2 we plot the functions r

2(t) in Eq. ~51! for
both the SRAP~with p5q51/2) and the ARAP~with p
51 andq50) for the same value ofr 522 and choosing
the parameter valuesm151/2, m251/4, r51. These
03610
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features in the RAP, derived here exactly, are qualitativ
similar to those in the exclusion process studied in Ref.@18#.

VII. CONCLUSIONS

In this paper we have studied analytically the mea
squared fluctuations in the diffusion of both a single-tagg
particle and two-tagged particles in the random average
cess~RAP! for all values of the hopping ratesp andq in one
dimension. We have shown that in the steady state, the
tofluctuation of a tagged particle grows subdiffusively
s0

2(t);ASRAPt
1/2 for p5q and diffusively s0

2(t);DARAPt
for p.q whereASRAP52r22(pm1 /p)1/2m2 /(m12m2) and
DARAP5r22(p2q)m1m2 /(m12m2). These behaviors o
s0

2(t) are similar to those in the simple exclusion proce
except the prefactorsA5(2/p)1/2(12r)/r @12–14# and D
5(p2q)(12r) @15,16# are different in the exclusion pro
cess. Besides the steady-state mean-squared two-tag flu
tion s r

2(t) in the RAP grows monotonically witht for p
5q and nonmonotonically forp.q, in much the same way
as in the exclusion process.

These findings raise the question whether or not the R
is in the same universality class as the simple exclusion p
cess in one dimension. Perhaps the RAP is just a coa
grained version of the exclusion process in one dimensi
The answer to this question seems to be in the negative
to a very crucial difference between the two processes. In
exclusion process forp.q, it is well known that there exists
an anomaloust2/3 growth hidden in the problem apart from
the usualt1/2 and t growth @19,17#. This anomalous growth
shows up either in the mean-squared fluctuation of the ce
of mass of the particles when viewed from a special mov
frame @19# or alternately in the two-tag correlation functio
s r

2(t) if one chooses the tag shiftr to be sliding with time

FIG. 2. The steady-state two-tag correlation functions r
2(t) in

Eq. ~51! plotted as a function oft for fixed r 522 for parameter
values m151/2, m251/4, and r51. The solid line shows the
monotonic growth ofs r

2(t) with t for the SRAP (p5q51/2), while
the dashed line shows the nonmonotonic growth for the ARAPp
51 andq50).
3-8
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with a special velocityr 52r2(p2q) @17#. It turns out that
the prefactor of this t2/3 growth is proportional to
}$@d2 j (r)#/(dr2)% where j (r) is the current density in a
hydrodynamical description@17#. For the exclusion process
j (r)5r(12r), and hence, the prefactor is nonzero. For
RAP, on the other hand,j (r)5m1(p2q) and is independen
of r. This is becausej (r)5r^v& where the average velocit
^v&5m1(p2q)/r, as can be easily derived from Eqs.~1!
and ~2!. As a result, for the RAP, the anomaloust2/3 growth
is absent, which puts it in a different universality class th
the simple exclusion process. In this sense, the RAP seem
be closer to the harmonic model studied in Ref.@18#.

In this paper, we have considered the RAP only in o
dimension. An obvious generalization would be to high
s

n

-

03610
e

n
to

e
r

dimensions. A natural way to generalize the model to hig
dimensions would be as follows. One considers particles
cated in the continuousd-dimensional space. In a small-tim
intervaldt, each particle makes a list of all its nearest neig
bors in various directions in space, chooses one of them
random, and jumps in the corresponding direction by a r
dom fraction of the Euclidean distance to that neighbor. T
is an isotropic version, a generalization of the SRAP. Sim
larly one can define an anisotropic version as well. To
best of our knowledge, the RAP has not been studied so
in higher dimensions. The question of tracer diffusion
higher dimensions, especially in two dimensions where o
may expect a logarithmic correction, also remains co
pletely open.
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